Mathematical modeling of mass transfer in microvascular wall and interstitial space.
نویسندگان
چکیده
A one-dimensional, unsteady-state mathematical model was developed to describe the transfer of macromolecules across a microvascular wall and into the interstitial space. The proposed theoretical model accounts for both molecular diffusion and convective transfer through the microvascular wall as well as in the interstitial space. The resulting partial differential equations were simultaneously solved using the Laplace transform method. The inversion of the Laplace transformed equations was obtained by using contour integration in the complex region. The final solution is represented by two equations expressing the macromolecule concentration in the microvascular wall region and in the interstitial space, respectively, as functions of time, spatial coordinate, macromolecule concentration in the microvascular wall at the plasma-wall interface, wall thickness, wall-interstitial space equilibrium constant for the macromolecules, ratio of the cross-sectional area of the two regions, sieving coefficients, diffusivity coefficients, and average fluid velocity terms in the two regions. Plots of the macromolecule concentration in both regions as a function of time are presented and discussed for selected values of the parameters. An analytical expression for the total amount of mass which has accumulated in a portion of the interstitial space at any given time was also derived and used to determine the average fluid velocity term and the diffusivity coefficient for each of the two regions from published experimental data (A. Y. Bekker, A. B. Ritter, and W. N. Durán, 1989, Microvasc. Res. 34, 200-216). A numerical nonlinear regression method was used for this purpose. The values for the diffusivity coefficients found in this work for this particular data set compare favorably with the results previously obtained by other workers in similar systems. It is expected that our model will be used in the future to describe the dynamics of mass transfer across a microvascular wall and into the interstitial space, on the basis of the molecular diffusion and/or convective transport mechanisms, thus contributing to the solution of the controversy regarding the nature of the transfer mechanism controlling macromolecule transport in living systems.
منابع مشابه
Mathematical Modeling of Single and Multi-Component Adsorption Fixed Beds to Rigorously Predict the Mass Transfer Zone and Breakthrough Curves
The aim of the present work is to prepare an adsorption package to simulate adsorption / desorption operation for both single and multi-component systems in an isothermal condition by different mechanisms such as; local adsorption theory and mass transfer resistance (rigorous and approximated methods). Different mass transfer resistance mechanisms of pore, solid and bidispersed diffusion, t...
متن کاملModeling heat and mass transfer in laminar forced flow between parallel plates channel imposed to suction or injection
A numerical model is developed to simulate the transport phenomena in the flow channel between parallel plates with porous and non-porous (or impermeable) walls. The continuity and momentum equations were solved first, assuming the wall Reynolds number in the range of with the suction or injection of air at a speed equal to the uniform inlet velocity. The results show that at constant inlet and...
متن کاملA three-dimensional mathematical model for drug delivery from drug-eluting stents
Current drug-eluting stent (DES) technology is not optimized with regard to the pharmacokinetics of drug release, more research on the <span style="font-size: 12pt; color: #000000; font-style: normal; ...
متن کاملSimulation of Stresses Induced by Heat and Mass Transfer in Drying Process of Clay-like Material
Drying represents one of the oldest unit operations employed in industrial processes. Drying is viewed as a process of simultaneous heat and mass transfer. Porous Clay-like material undergoes stresses due to non-uniform distribution of temperature and moisture induced by heat and mass transfer respectively. The aim of this work is to simulate the stresses induced by heat and mass transfer durin...
متن کاملImproving Three Phase Modeling of Fluidized Bed Dryer
Heat transfer phenomena in batch fluidized bed dryer have been studied and analyzed using three phase model including solid phase, interstitial gas phase and bubble phase based on Rizzi model. New correlations of heat transfer coefficient to surrounding and convection heat transfer coefficient between solid and interstitial gas are being proposed. In addition, some modifications have been d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microvascular research
دوره 40 3 شماره
صفحات -
تاریخ انتشار 1990